
NOTATION 

A, area, m2; a, thickness of the crystallizer, m; ap, acceleration, m/sec2; F, force, 
N; f, friction coefficient; g, gravitational acceleration, m/sec2; h, height, m; As free 
height of the melt layer, m; n, frequency of rotation, sec-1; R, radius, m; T, temperature, 
K; T', temperature of the contact, K; v, velocity, m/sec; x, coordinate; ~, coefficient of 
heat transfer, W/(m2"K); ~, slope angle of the casting system, deg; ~, thickness of the 
melt strip, m; ~, rate of cooling, ~ 8, wetting contact angle, deg; ~, thermal con- 
ductivity, W/(m2.K); <, thermal diffusivity, m2/sec; p, density, kg/m3; i, coefficient of 
surface tension, N/m; ~, time, sec. Subscripts: a, air; g, gravitation; s liquid; i, 
inertia; c, contact; cap, capillary; cr, crystallizer; s, strip; mr, microroughness; st, 
surface tension; fr, friction; C, centrifugal; p, particle. 
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EFFECTIVE THERMAL CONDUCTIVITY OF A STRUCTURED POWDER 

A. A. Belyaev, A. Yu. Zubarev, E. S. Kats, 
and V. M. Kiseev 

UDC 536.24 

The effective conductivity in a granular bed may be substantially dependent 
on the transport at granule contacts. 

Interest attaches to heat and mass transfer in granular layers because these are widely 
used in engineering [1-4]; it is difficult to examine theoretically the transport in such 
media particularly because there are numerous particles, which may pack in various ways, 
and because there are simulatneous mechanisms differing in nature, whose contributions to 
the total flux in general are not additive. For example, there may be major components due 
to conduction in the particles and in the gaps between them, convection in the pores, and 
phenomena in the contact zones involving surrounding gas and liquid lenses. 

A single model cannot incorporate all the phenomena affectingtransport here; a more 
constructive approach involves examining the various mechanisms separately. 

The framework conductivity in a granular bed has been examined in experiments on the 
effective thermal conductivity for a lightly pressed layer of nickel spheres less than a 
micron in diameter. The pressing has been placed in various media. To insure that the 
specimen maintained its shape, it was sintered at 750~ and 102-103 arm. The particles ad- 
hered but did not fuse. The pressing increased the contact areas and increased the frame- 
work conductivity, while reducing the importance of conduction in the pores. Small parti- 
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Fig. i. Effective thermal conductivity i of a lightly 
pressed bed of nickel particles, diameter 2a ~ 0.5 pm 
(filled points) or 0.9 ~m (open points) as a function of 
bulk particle content p (b - 1.8 a) The points are from 
experiment, while the lines are by calculation from (A.I); 
a and i specimen in air, b and 2 in alcohol, c and 3 in 
water. 

Fig. 2. Sphere contact model, where the dashed lines are 
the geometrical continuations of the spheres in the adja- 
cent ones. 

cles were used to make the specimen statistically representative and to reduce the effects 
from fluctuations in porosity and structure. 

Figure i shows the results; estimates from conforming methods [1-6] exceeded the values 
by factors of 5-10. Results analogous to ours have been obtained in measurements [7] under 
similar conditions. 

The [1-6] methods have been tested in numerous experiments with large particles and 
well-sintered ceramics, so the [7] results and ours indicate that a very fine powder with 
pronounced boundaries between particles shows important effects from the contact zones, 
which have elevated thermal resistance. The increased resistance at the contacts may be 
due to microroughness, oxide or adsorption layers, or scattering and diffraction for the 
heat carriers at the contacts (phonons and conduction electrons), or to other factors. 

Finely divided powders and various ceramics are common engineering materials; our 
measurements and the [7] data however show that the conductivity is not always described 
by traditional methods. It is therefore necessary to devise a method of calculating the 
effective conductivity that incorporates the contacts. 

In [1-6] and in [8-10] there are surveys of researches on effective conductivity de- 
termination for powders, but the approaches there are based on modelsand essentially heuris- 
tic assumptions. They are suitable for engineering calculations, but the large number of 
intuitive assumptions does not allow one to generalize from them. The heuristic and semi- 
empirical approaches are inadequate, and they should be used only when no suitable method 
can be selected. For example, in [7], the measurements were processed by means of Odelev- 
skii's formula [ii], which is justified only for matrix mixtures having moderate dispersed- 
phase concentrations [12] and in principle is incorrect for a framework system. The acci- 
dental agreement between measurements and what is certainly a theory inapplicable under these 
conditions prevents one from performing a physical analysis of the situation and creates 
spurious views on heat transfer in the material. 

A logical description can be obtained only from a correct theory that does not employ 
unsound assumptions; ensemble averaging [13, 14] meets these conditions in describing the 
thermophysical parameters of a flow composed of isolated spherical particles. In [15, 16], 
that theory was extended to framework materials, but subsequent tests showed that the con- 
tact model used there was too simplified and mostly failed to describe the actual situation. 
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That deficiency in [15, 16] is corrected here. The formalism in that theory has been 
described in detail in [15-17], so here we give only the main physical concepts and the 
results. 

Physical Model. The specimen is considered as a system of identical randomly dispersed 
spheres forming a homogeneous and isotropic framework in a continuous matrix. We assume 
that the inclusions are in contact as intersecting spheres (Fig. 2); we neglect any deforma- 
tion outside the contact regions. 

One needs a detailed description of the contact processes in a strict formulation, but 
no theory exists for the thermophysical parameters of these contact spots. Also, in most 
practical cases one does not know the geometrical or physical features of the particle 
surfaces or contact areas. 

The task is substantially simplified if the thickness s of the region in which the con- 
ductivity is altered at the contact is much less than the particle radius a, which we subse- 
quently assume; then one can neglect the contact-zone thickness and consider that zone as 
infinitely thin and having surface conductivity ~. 

The surface conductivity has been defined for example in [18] for electrophysical pro- 
cesses; there is a complete analogy between heat and mass transport in a phenomenological 
description, so we consider the surface thermal conductivity, which is formally defined as 
for the electrical conductivity in [18]. Without entering into details, we note that K can 
have either sign: positive if the surface layer has conductivity higher than that of the 
particle material and vice versa. Also, K does not have the dimensions of the ordinary 
thermal conductivity. 

An important point is that the contact layer thickness is small in the physical sense, 
not the mathematical one, so the layer has a finite (nonzero) thermal resistance, and the 
temperatures at the two surfaces are different. In general, the boundary condition for the 
temperature at the contact surface of one sphere with another is 

T+-- Y~= a~nvY_; T~ = lira T. (1) 
r ~ a ~  

Here 6 is a parameter that in general is not zero; (i) follows from dimensional arguments 
and also from the obvious circumstance that the temperatures on the two sides of the contact 
are the same if there is no heat flux through the surface (nVT_ = 0). 

It is not our purpose to determine K and $ explicitly; they are considered as empirical 
parameters, but ~ can be estimated as follows. We represent the contact surface as a homo- 
geneous layer, thickness s and thermal conductivity A s. To a first approximation, I s is 
given by A s ~ Xz + K/s We consider the balance between the fluxes on the two sides to get 

~,., l ~ (2) 

We note that (2) is an estimate, perhaps crude; it can be used only for qualitative 
analysis. 

Macroscopic Thermal Conduction Equation. The general theory [13] gives equations de- 
scribing the heat transfer in the continuum approximation derived by averaging equations 
applicable to the pores and particles together with the boundary conditions at the surface, 
where one averages over all permissible configurations. See [16, 17] for the derivation 
for this medium. We omit details and write the final result for the case where the Fourier 
number constructed in the two phases on scales a can be neglected: 

a~ (3) c = - - v q ;  q =--~Vx; C=Co(1--p)+clP, 
at 

where X is defined by the formal relations 

~v~(R)=~o[V~(R) ---p--p y xx+ (R -s r) dr] -5 ~l p 
0 r ~ a  U 

S ?~* (R -5 r) dr -5 
~<~ (4) 

~ a  3" q- ~ PiP div~grad.[~*(R+ r) 4- x+(R-5 r)ldr; v = 3 
r = a  
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Here z+ and z* are the temperatures outside and inside an arbitrarily selected trial parti- 
cle subject to the condition that there is averaging over the positions of the other parti- 
cles, while x is the cartesian coordinate r parallel to the mean flux q. 

Trial-Particle Treatment. We formulate the determination of T + and z* in accordance 
with [13, 14] by averaging the local heat-transfer equations and the boundary conditions 
at the particles over the permissible configurations subject to the condition that the posi- 
tion of one of the particles is fixed. We again omit details, which are to be found in [17], 
and write the final result: 

Ax*(O=O;  r<~a ;  v q ( O = O ,  r '~ /a ;  

x* (r) + a p ~ n v  x* (r) = x (r) + ~(r), nq* (r) : n [q (r) -l- q (r)] + p~ ~ divsgrad 8 [x* (r) -l- ~+ (r)], r : a; 
(5 )  

~' (r) = ~o -/- p '  (r) (L --  ~);  p~ ----- p' (a); 
P 

x (r), x* (0, x+ (r) ~--- �9 (R + r), ~* (R q- r), x+(R + r). 

Then (5) formally coincides with the treatment for a single particle placed in an in- 
finite medium whose properties are in some way controlled by the form of the conditional 
dispersed-phase concentration p'(r), which are thus dependent on the distance to the parti- 
cle center. The surface has a thin layer with surface conductivity <Pl and resistance 
parameter 8PI (see [18] for a detailed derivation for the boundary condition on the fluxes 
when the surface conductivity is incorporated). As p'(r) near the particle is not equal to 
p, which is entirely due to the particle being incompletely permeable, the specified sphere 
drives away the others. Then p'(r) + p for r + ~, which is a direct consequence of the cor- 
relation dying away. Then ~ and ~ appear in (5) with weight Q1, since 91 is equal to the 
fraction of the surface area occupied by contact spots. 

By definition [13, 14], 0'(r) is 

p' (r )=  ~ ~(r')ar', (6 )  
Ir'--rl~a 

where ~(r') is the probability density of finding the center of at least one particle in 
r' if the center of the trial sphere is at the origin. The form of ~(r') is determined by 
the particular packing and is taken as given here. One uses a suitably chosen ~ in (6) to 
derive ~ and ~+ from (5) and (6), which are then used in (4) to calculate I. 

One often gets the situation where one can specify the coordination number ~, which is 
equal to the mean number of contacts per unit particle surface, and the mean distance b 
(b < 2a) between the centers of contacting spheres. A simple form for ~ corresponding to 
such packing is 

I 
0, r'<2a, 

(r') = ~ (r' - -  b) + P_t_ / > 2a, (7 )  
O '  

4 U = ~a 3, 
3 

where 6(x) is a delta function. 

We substitute (7) into (6) and then into (5) to get equations that can be solved only 
numerically; to simplify calculating the smooth function 9'(r), it can be approximated as 
a step one. The appendix gives the explicit form of 9'(r) corresponding to (6) and (7) to- 
gether with a possible approximation, in which the space around the trial particle is split 
up into several concentric layers (equal to the number of steps), in which p' is taken as 
constant. We incorporate the continuity conditions for the temperature ~ and flux qat the 
boundary of each layer. In athree-step approximation, one determines I from eight linear 
equations and four nonlinear ones, which are given in the appendix. This system is readily 
solved by computer. 
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Fig. 3. Comparison of (A.I) calculations for ~, ~ = 0 with 
experiment [5] (Figs. 4-6 in that book); $ and b have been 
chosen in accordance with the [5] recommendations. 

Fig. 4. Choice of step approximation for p'(r) used in ap- 
pendix. 

The K and $ appearing in (5) and thus in (4) for X are considered here as empirically 
specified constants; the condition s << a in (2) implies that,good surface conductivity 
means (K/a ~ X~) ~ ~ ~/a << i, and this quantity can be neglected in the calculations. 
If on the other hand the contact layer has elevated resistance (6 e i), (2)implies that 
{K/a{ ~ ozs and one can neglect ~/a. Therefore, there is only one empirically defined 
parameter for practical calculations: K or 6. 

Figure i shows measurements, which have been described with K = 0; ~ was chosen to give 
the best agreement with the theory when the specimen was in air, which gave $ ~ 9.8. These 

were used to describe the experiments with water and alcohol. Figure i also shows the 
calculations, which agree satisfactorily with the measurements. 

An independent check was provided by comparison with [5] measurements on a highly sin- 
tered ceramic, where there were no physically prominent boundaries between particles, so 
K, $ = 0. (A.I) was also used. Figure 3 shows the characteristic result, which also agrees 
well with the theory. There is a certain systematic excess because the three-step p'(r) ap- 
proximation is crude. 

This method gives a fairly cumbersome system, which becomes even more complicated when 
one raises the p'(r) approximation accuracy, which is clearly a deficiency, although the 
complexities are purely computational. In essence, the approach enables one to incorporate 
many factors that complicate the transport here, e.g., (A.I) enables one to calculate the 
trace-component diffusion coefficient for a polycrystalline material on the basis that the 
diffusion in the contact zones is easier than in the crystallites, with $ ~ 0, while ~ is 
chosen by fitting theory to a simple measurement or is estimated from independent consider- 
ations. In principle, it is also quite simple to incorporate sorption-desorption conditions 
at the particles, if the diffusion and sorption equations are averaged as for example in 
[ 1 9 ] .  

As the contact zones influence the conductivity substantially, one needs research on 
the physical properties of the surface and contact areas under various conditions; such 
research can provide a basis for controlling the properties, in addition to the purely 
scientific interest. 

APPENDIX 

The p'(r) given by (6) and (7) is 

p '  ( r )  = ~ f  ( r )  -}- p ~  ( r ) ,  n = 3 ,14  . . . .  

f (r) = - -  r + 2  a 2 -  
(b  b2 a 2 - -  r2 b 2 - -  a~ r2 

t , 2 r  2 r  ' 

rEg~:  [ 2bZ--a2--a-V2--~+a 2 2b~--a2+a-V2-~ +a2 J 
2b ' 2b ' 
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2 7 - - 5 6 q + 3 0 ~ - - - ~  ~ 
[ ( r ) = 0 ,  r ~ ;  ~ ( r ) :  

16q 

r 
1<~------ < 3 ;  ~ ( r ) : 0 ,  ~1<1;  ~ ( r ) :  1, ~1>3 .  

a 

The smooth functions f and ~ are approximated by steps (Fig. 4): 

[ (r)  = 

O, r < a  

fr a < r < o ~  ~) o ~ _ a + - l / ~ - - a 2  
2 

2 

[(3), r < r<~(3)  ~(3) : 20, 

0, r > c ~  Cz) [(O = [(r~), ] = 1, 2, 3, 

r~ = a; rz = ] / - ~ -  a z, rn = 2a; 

~(r )  = {0, a < r < 2 a ,  
1, r < 2 a .  

These representations can be used with (4) and (5) to calculate % from a system in 
which A, B, C, D, E, F, H, and G are considered as unknowns along with l(J) and %, while the 
other quantities are taken as parameters. A detailed derivation has been given for a system 
analogous to that below but with ~, ~ = 0 in [17]: 

A (1 + [~p,) - -  B - -  Ca -3 = I, Ak~ - - ( B  - -  2Ca--~) ~c~) + 

+ 9l 2a (A -v- B + Ca -3 + 1) = ~, B ~- C~ ~1)-3 - -  D - -  Ecr r _-- 0, 

~cl) (B - -  2Ccr <1)-3) - -  ~2) (D --2Ecz (1)-3) ~ 0, 

D -}- Ec~ r - -  F - -  G~ c2)-3 ~ 0, 

~.(2) (D - -  2Eo~ ~2)-3) - -  ~(3) ( F - -  2Gcr ~2)-3) : 0, F 3 r- G~(3)-3--Ho~(3)-3 = 0, 

;~c3) (F - -  2Gcr ~3~-3) -5 2H~r = 0, 

~ c i ) = ~ o + ( k _ ~ o )  ~ f ( h  , ] =  1, 2, 3, 
P 

;r ; ~ = ~ o [ 1 - - p ( 1 - S  B-k-, Ca-3) l+p~A-+-p9~  (I + A - k - B + C a - 3 ) .  

(A.I) 

NOTATION 

a, particle radius; b, mean distance between centers of contacting spheres; c, c I, 
and co, effective specific heat, specific heat of particle material, and specific heat of 
matrix; s contact zone thickness, where the conductivity differs from that of the particle 
material; n, unit vector normal to particle surface; q, mean flux; q, perturbation intro- 
duced by trialparticle into q pattern; R, radius vector in laboratory coordinate system; 
r, radius vector from particle center; T, true temperature; 8, parameter characterizing con- 
tact-layer thermal resistance; I and l', effective thermal conductivity and conductivity 
near trial sphere; ~i and 10, thermal conductivities of particle material and medium in 
pores; p and p', volume concentrations of dispersed phase on average and near trial parti- 
cle; �9 and 7, mean temperature and perturbation introduced by trial sphere into �9 pattern; 
~(r), binarysphere distribution. The operators div s and grad s coincide with the usual di- 
vergence and gradient operators but for the fixed value r ~ a. 
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OPTIMIZATION OF THERMOCOUPLE INSTALLATION FOR STUDY OF INTENSE 

TRANSIENT THERMAL ACTIONS ON MATERIALS 

S. L. Balakovskii, E. F. Baranovskii, and P. V. Sevast'yanov UDC 536.24 

A method is proposed for determination of the optimum variant of thermocouple 
installation to reduce measurement error for the case of individual electrode 
welding. 

In studying thermal processes in various devices and equipment the temperature and 
thermal fluxes in the most heavily loaded details often cannot be measured directly. For 
example, such a situation is typical of heat transport analysis on the surfaces of cutting 
and abrasive instruments, and in portions of casting machines in contact with the solidi- 
fying metal. The difficulties in experimental determination of such quantities usually in- 
volve rapid destruction of sensors by thermal or mechanical action or insufficient measure- 
ment accuracy [I]. In such situations it becomes desirable to perform indirect measurements 
and process them by converse problem methods [2]. 

One way to improve effectiveness of such studies is planning, by which we understand 
selection of the basic experimental factors [3]: the quantities to be measured directly, 
the number and location of primary transducers, special features of loading. For tempera- 
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